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Abstract

The problem of efficient capture of nonlinear oscillations into resonance is
discussed. The capture is guaranteed by passage through resonance when the
system starts in equilibrium and the driving amplitude exceeds a threshold.
The threshold problem is described by a universal nonlinear Schrödinger-
type equation with a single parameter and cannot be analyzed by perturbation
methods. A similar threshold phenomenon is a characteristic of two weakly
coupled oscillators with a slow parameter if one of the oscillators starts in
equilibrium, allowing efficient capture into resonance and subsequent adiabatic
(autoresonant) control of strongly excited nonlinear oscillations.

PACS number: 05.45.Xt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Autoresonance is a salient property of many nonlinear systems to stay in resonance with
driving perturbations despite variation of system parameters. The phenomenon was first
used in application to particle accelerators [1, 2] and, more recently, as a convenient method
of controlling many other dynamical [3] and extended systems (see, for example, [4] and
references therein). One way of implementing autoresonant manipulation of nonlinear systems
is starting in resonance. This approach requires fine tuning of parameters which may be
experimentally difficult, especially when the number of degrees of freedom of the driven
system increases. Another approach is to capture the nonlinear system into resonance by
slowly passing through the resonance. This resonant capture paradigm was triggered by
problems in planetary dynamics [5]. The problem was analyzed in [6] showing that for
strongly excited oscillations only a small subset of initial conditions ends up in resonance
leading to the notion of probability of capture into resonance. The situation is different if
the oscillator starts from (or near) its natural (zero amplitude) equilibrium. In this case, the
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phase locking in the driven system is guaranteed prior to arrival at the linear resonance [7] and
the question becomes that of preserving the phase locking at later times. One finds that the
phase locking in the system continues (the system remains in autoresonance) after the passage
through resonance provided the driving amplitude exceeds a sharp threshold. At lower driving
amplitudes the phase locking is lost. This threshold phenomenon was observed in experiments
with magnetized electron clouds [8]. The effect was explained in terms of a quasi-particle in a
tilted, washboard-type potential with the potential minima disappearing for driving amplitudes
below the threshold, leading to the escape of the system from resonance. Although not fully
rigorous, this theory gave a very good prediction for the threshold. In section 2 of this work we
further discuss the threshold phenomenon for capture of nonlinear oscillations into resonance
when the driven oscillators start in equilibrium. Later, in section 3 we consider a related
threshold phenomenon and autoresonance in a system of two weakly coupled oscillators
with a slow parameter, when one of the oscillators starts in equilibrium. We show that the
autoresonance in this system is guaranteed provided the coupling between the oscillators is
sufficiently strong, yielding efficient capture of strongly excited oscillations into resonance and
their subsequent autoresonant control. Nevertheless, this control is unidirectional because one
can only decrease the action of the resonantly captured strongly excited oscillator. In section 4
we suggest another method of efficient capture of large amplitude oscillations into resonance,
which removes the aforementioned limitation. The approach is still based on coupling to
another oscillator in equilibrium, but uses an oscillating coupling parameter having a slowly
varying frequency. Finally, section 5 presents our conclusions.

2. The threshold phenomenon

Consider a driven nonlinear system governed by the Hamiltonian

H = H0(p, q) + 2εq cos ϕ(t), (1)

where q, p are canonical coordinate and momentum respectively, H0 is the time-independent
unperturbed Hamiltonian, the driving amplitude ε is small, while the driving frequency
ω(t) = dϕ/dt is a slow function of time. It is convenient to transform the problem to
action-angle variables I, θ of H0. Then equation (1) becomes

Hr = H0(I ) − εa1(I ) cos �, (2)

where we have expanded q(I, θ) = ∑
an(I ) cos(nθ) in Fourier series, used the standard

isolated resonance approximation [9], i.e. left the fundamental (n = 1) resonance
contribution by replacing

∑
an(I ) cos(nθ) cos ϕ by 1

2a1 cos(θ −ϕ) in the perturbation term in
equation (2), and defined the phase mismatch � ≡ θ − ϕ − π . The corresponding evolution
equations are

İ = −εa1(I ) sin �,

�̇ = �(I) − ω(t) − ε( da1/dI ) cos �,
(3)

where � = dH0/dI is the unperturbed oscillations frequency. Equations (3) differ from
those describing the usual nonlinear resonance by time variation of the driving frequency
and characterize the autoresonance phenomenon, where, if initially in resonance, i.e.
�(I (t0) ≈ ω(t0) and �(t0) near zero or π , depending on the sign of the Hessian d2H0/dI 2,
the system automatically adjusts its action I so that �(I (t)) ≈ ω(t) despite the variation
of the driving frequency. This also means a wide range of controllability of the driven
nonlinear system by variation of parameter (the driving frequency). Starting in resonance
is a precondition for successful autoresonance. Capture into resonance by passage through
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resonance is one way to fulfil this precondition. Here we consider the problem of accessibility
of the autoresonance in the system, when the system is initially in equilibrium and the driving
frequency passes the linear frequency ω0 in the system (we set ω0 = 1 for simplicity). Thus,
we focus on a weakly nonlinear version of equations (3), where a1 ≈ √

2I ,� ≈ 1 + βI

(assuming β > 0 for definiteness), and, locally, near the resonance, the driving frequency
ω(t) ≈ 1 + αt, α > 0. Then equations (3) become

İ = −ε
√

2I sin �,

�̇ = βI − αt − (ε/
√

2I ) cos �.
(4)

This problem is governed by the Hamiltonian

H ′
r (I,�, t) = 1

2βI 2 − αtI − ε
√

2I cos � (5)

of the type studied in [6]. Another representation of the problem is obtained by defining
a = √

2I as a new dynamical variable instead of I and rescaling, i.e., introducing dimensionless
time τ = α1/2t , new amplitude A via A2 = 1

2βα−1/2a2, and the dimensionless driving

amplitude μ = εβ1/2√
2α3/4 . Then equations (4) become

dA/dτ = −μ sin �,

d�/dτ = A2 − τ − (μ/A) cos �,
(6)

or by defining a complex dependent variable, ψ = A exp(i�),

idψ/dτ + (|ψ |2 − τ)ψ = μ. (7)

This inhomogeneous nonlinear Schrödinger-type equation with a single parameter describes
the passage through linear resonance in nonlinear dynamical systems. The form of this
equation also shows the link to several weakly nonlinear driven wave problems with slow
parameters [4].

We are interested in passage through the resonance and autoresonance in the system, i.e.
in the asymptotic solution of equation (7) at large positive τ subject to the initial condition
ψ(τ0) = 0 at some negative τ0. For zero initial conditions, the initial phase mismatch � is
ill defined. Furthermore, the second equation (6) has a singularity at A = 0. This singularity
is due to the choice of representation of ψ in equation (7) via the amplitude and phase. One
can avoid this problem by representing ψ as ψ = x + iy, yielding nonsingular evolution
equations for the real and imaginary parts x and y for initial x(τ0) = y(τ0) = 0. We used this
approach in our numerics with the zero initial condition. Note that the zero initial condition
corresponds to the equilibrium of the system, which is a preferred state in many physically
relevant situations. Nevertheless, we have also found numerically that small deviations of
initial conditions from zero did not lead to a significant change in the evolution described
below (particularly in the threshold condition). However, detailed analysis and theory of
capture into autoresonance with nonzero, but sufficiently small initial conditions remained
outside the scope of the present work. Now, let us show that the zero initial condition on ψ

yields phase locking in the system prior reaching the linear resonance at τ = 0. Indeed, for
|ψ | � 1 equation (7) can be linearized, and solved via Fresnel integrals, i.e.

ψ = −iμ
∫ τ

τ0

ei(τ ′2−τ 2)/2 dτ ′ = −μ[F(τ) − F(τ0) e−i(τ 2−τ 2
0 )/2], (8)

with F(τ) = f + ig expressed in terms of the auxiliary Fresnel functions f and g [10].
Asymptotically, at sufficiently large τ (practically for |τ | > τmin = 2), F ≈ 1/τ [10] and
therefore, for τ, τ0 < −τmin, i.e. prior reaching the linear resonance, we obtain the solution

ψ ≈ −μ

τ

[
1 − τ

τ0
e−i(τ 2−τ 2

0 )/2

]
. (9)
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Figure 1. Threshold for autoresonance in the nonlinear Schrödinger equation (7) versus initial
normalized time τ0 (solid line). The circles show a similar threshold for the normalized coupling
parameter in the two coupled oscillators system (18).

We observe that � = Arg(ψ) in this solution is bounded, meaning phase locking, with � → 0
at small τ/τ0. Thus, the driven solution becomes phase locked immediately after the starting
point (or somewhat later, if the analysis is extended to nonzero, but small initial conditions
[4]). The evolution of the system beyond −τmin enters the nonlinear stage and the problem
of its final asymptotic state at large positive τ depends on whether the phase locking in the
system continues and we discuss this asymptotic limit next.

Finite amplitude asymptotic solutions of equation (7) at positive τ are the constant
amplitude solution

ψ = A0 exp(−iτ 2/2) (10)

and the phase locked (� = 0) growing amplitude solution

ψ = √
τ . (11)

The latter is the desired autoresonant limit. But how the system chooses between the two
solutions for given initial conditions? The answer is simple; it is the value of the single
parameter μ in the system which describes the bifurcation. One finds that for each τ0 there
exists a critical value μth separating the two types of solutions. Figure 1 shows the dependence
of this critical μ on τ0 found numerically. At large negative τ0 and until τ0 ≈ −τmin, μth ≈ 0.41
in average, with small oscillations around the average. Therefore, for t0 < −2α−1/2, returning
to our original parameters, we have

εth = 0.58β−1/2α3/4. (12)

For larger t0 and even for t0 > 0 a sharp threshold value εth for asymptotic transition to
autoresonance still exists, but grows significantly for t0 > 0. Note that in the vicinity of the
threshold equation (7) has no small parameters and, thus, in principle, μth cannot be calculated
via a perturbation theory. This is the consequence of the existence of two small parameters in
our original problem, such that the rescaled driving amplitude μ involving the ratio of powers
of these parameters happens to be of O(1) near the threshold. Still, a heuristic approach [8]
leads to the estimate of the threshold within a few percent accuracy. Nevertheless, presently,
we have no explanation of small oscillations of μth around the average of 0.41 for finite initial
|τ0|, leaving the challenge for future research.
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In conclusion, for driving amplitudes exceeding the threshold and zero (or sufficiently
small) initial condition on the initial amplitude of the driven oscillator, one guarantees a
continuing phase locking (autoresonance) in the system allowing efficient control by slow
variation of the driving frequency. The question remains regarding how to efficiently phase
lock initially strongly excited oscillators by passage through resonance. The direct passage
does not give a satisfactory answer to this question because the capture probability becomes
small for strongly excited oscillations [6]. Nevertheless, one can efficiently capture such
oscillations into resonance by coupling to another oscillator, which starts in equilibrium. We
discuss this idea next.

3. Autoresonance of coupled oscillations

Consider a system of two oscillators governed by the Hamiltonian

H = H01(p1, q1) + H02(p1, q1, λ(t)) + 2εq1q2, (13)

where H0i describe two decoupled oscillators, one of which has a slow parameter λ(t).
The choice of the perturbation 2εq1q2 is dictated by simplicity and describes a weak linear
coupling. In studying resonant interaction of the oscillators, we again transform to the
action-angle variables, Ii, θi , of the decoupled system, expand q1(I1, θ1) = ∑

an(I1) cos(nθ1)

and q2(I2, θ2, λ) = ∑
bm(I2, λ) cos(mθ2) in Fourier series, and use the isolated resonance

approximation in the perturbation term, leaving a single, fundamental resonance (m = n = 1)

contribution in the Hamiltonian. This yields the approximation

Hr = H01(I1) + H02(I2, λ) + εa1(I1)b1(I2, λ) cos �, (14)

where � = θ1 − θ2. The corresponding evolution equations are

İ 1 = +εa1(I1)b1(I2, λ) sin �,

İ 2 = −εa1(I1)b1(I2, λ) sin �,

�̇ = �1(I1) − �2(I2, λ) + ε

(
b1

da1

dI1
− a1

db1

dI2

)
cos �.

(15)

The first two equations in (15) yield the conservation law I1 + I2 = C = const, which allows
us to eliminate I1 and reduce the problem to that of a one degree of freedom for the canonical
variables I2,� (we shall use notation I instead of I2 in the following):

İ = −εV1 sin �,

�̇ = �1|C−I − �2|I − ε( dV1/dI ) cos �,
(16)

where V1(I, λ) = a1|C−I b1|I and the corresponding Hamiltonian

H ′
r = −H01|C−I − H02|I − εV1(I, λ) cos �. (17)

The similarity between equations (16) and (3) allows us to predict autoresonance in the system
when starting in resonance, i.e. a continuing frequency matching �1(C − I ) ≈ �2(I, λ) in
the system despite variation of λ when this variation is sufficiently slow. As a consequence,
one can dynamically control the state of the nonlinear system by varying a parameter, but
needs a fine initial tuning of the system for choosing resonant initial conditions. However, if
one starts far from resonance and oscillator 2 proceeds from equilibrium (zero amplitude), the
autoresonance can be again guaranteed by slow passage through resonance. We demonstrate
this effect in an example of coupled ‘hard’ nonlinear and linear oscillators described by

q̈1 + 4q3
1 = 2εq2,

q̈2 + λ2(t)q2 = 2εq1,
(18)
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Figure 2. Autoresonant evolution of the energies E1,2 of the two coupled oscillators in system
(18). The evolution just below the threshold for capture into resonance is shown by dotted lines.

where the frequency λ(t) = λ0 − αt . Figure 2 shows the evolution of the energies E1,2 of the
two oscillators subject to initial conditions (at t0 = −320)q10 = 1.3, q20 = 0, q̇10 = q̇20 = 0
and parameters λ0 = �1(I = 0) = 2.2 (in this case the oscillators resonate at t ≈ 0),
ε = 0.013 and α = 0.001. One can see a continuous autoresonant decrease of the energy
of the nonlinear oscillator for t > 0 as the two oscillators stay in resonance for t > 0. The
dotted line in the figure shows the evolution for the same parameters and initial conditions,
but ε = 0.0115, which is just below the threshold value of εth = 0.0119 for resonant capture.
The problem of the threshold in this case reduces to that described in section 2. Indeed,
focusing on the case described by equations (18) for simplicity (in this case H02 = λ(t)I and
b1 = √

2I/λ(t)), a small I expansion in equation (17) yields

H ′′
r ≈ − 1

2βI 2 + αtI − εa
√

2I cos �, (19)

where β = ∂2H01/∂I 2
1 at t = 0 (i.e. at I1 ≈ C) and, to lowest order, a = λ

−1/2
0 a1|I1=C. This

Hamiltonian differs from (5) only by the signs in the first two terms. Therefore, all conclusions
of section 2 can be applied in the present case with the asymptotic autoresonant value of � at
π instead of 0, while the autoresonant threshold when starting far from resonance in this case
becomes [compare to equation (12)]

εth = 0.58a−1β−1/2α3/4. (20)

We have also studied the problem of the threshold in equations (18) numerically for a set of
initial times and show the results for 70εth in figure 1. One observes a full agreement with the
results for μth in the externally driven oscillator case. But now we have a method for efficiently
capturing a strongly excited oscillation into resonance. Nevertheless, the autoresonant control
of the system by using this scheme comprises a unidirectional process, because the action
of the initially excited oscillator can only be lowered after the capture into resonance, as
follows from the conservation law I1 + I2 = C. In the next section, we present a modification
of this scheme allowing us to both autoresonantly increase and decrease the action of the
excited oscillator. But, prior to addressing this different autoresonant scheme, we discuss an
additional phenomenon accompanying autoresonant evolution in figure 2, i.e. small oscillating
modulations of the energy around the autoresonantly evolving average. Recall that due to the
conservation law in the coupled oscillator problem, it reduces to that of autoresonance in
a one degree of freedom system for the canonical variables I,�. In this case the smooth
autoresonant evolution is always accompanied by slow oscillations having characteristic

6
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Figure 3. The energies E1,2 of the coupled oscillators in system (18) with an oscillating coupling
parameter. (a) Passage through �1 − �2 resonance; (b) passage through �1 + �2 resonance. The
autoresonant decrease or increase of the energy of the initially excited oscillator 1 is obtained by
choosing one of the resonances.

frequency of O(ε1/2) [11]. These oscillations are expressions of stability of autoresonant
evolution in driven one degree of freedom dynamical systems.

4. Capture into resonance by oscillating the coupling parameter

Consider a system of two coupled oscillators governed by the Hamiltonian

H = H01(p1, q1) + H02(p2, q2) + 2ε(t)q1q2, (21)

where, in contrast to (13), the coupling parameter is a constant amplitude oscillation having
a slowly varying frequency, ε(t) = ε0 cos

∫
ω(t) dt. As before, oscillator 2 is not excited

initially. Now the chirping of ω(t) allows us to pass through either �+ ≡ �1 + �2 or
�− ≡ �1−�2 resonances, respectively, and to efficiently capture the initially excited oscillator
1 into resonance and subsequently control its state by variation of the driving frequency. As
an illustration, we consider example (18) from the last section, but now oscillate the coupling
parameter. Figure 3 shows the energies of the two oscillators when the driving frequency
ω passes the two combination resonances �+ (figure 3(a)) and �− (figure 3(b)). We used
ε0 = 0.025 and the same initial conditions as in section 3, while the driving frequency was
ω(t) = ω0 + αt with ω0 = 3.2, α = 0.001 and ω0 = 1.2, α = −0.001 for the �+ and
�− resonances respectively, while the frequency of the linear oscillator was kept constant
λ = λ0 = 1. One observes that the energy of the initially excited nonlinear oscillator in
autoresonance can be both increased or decreased by passing through different resonances.

The theory of the process of capture and subsequent autoresonance in this system can be
developed similarly to that in section 3. We again transform to the action-angle variables of
the decoupled oscillators, yielding the isolated resonance Hamiltonian for the two resonances
[compare to equation 14]

H±
r = H01(I1) + H02(I2) +

ε0

2
a1(I1)b1(I2, λ) cos �±, (22)
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where �± = θ1 ± θ2 − ∫
ω(t) dt . The corresponding evolution equations are

İ 1 = +
ε0

2
a1(I1)b1(I2, λ) sin �±,

İ 2 = ±ε0

2
a1(I1)b1(I2, λ) sin �±,

�̇± = �±(I1, I2) − ω(t) +
ε0

2

(
b1

da1

dI1
± a1

db1

dI2

)
cos �±.

(23)

These equations yield the conservation laws, I1 ∓I2 = C± for the �± resonances respectively,
allowing us to eliminate one of the actions (say I1) in the problem and reduce it to that of one
degree of freedom for the canonical pair I2,�. Again, in the initial trapping stage, for small
I2, one can assume a constant value of a1 at the resonance, while for the case of the linear
oscillator 2, b1 = √

2I2/λ0. This leads to an effective Hamiltonian of form (19), yielding a
similar scaling for the thresholds for capture into resonance as described above. Finally, as in
the case illustrated in figure 2, one can see slow oscillating modulations of the energy in the
advance autoresonant stage in figure 3. The origin of these oscillations was discussed at the
end of the last section.

5. Conclusions

We have described the threshold phenomenon in the process of slow capture of driven nonlinear
oscillations into resonance when starting in the equilibrium. The threshold problem is
described via a generic nonlinear Schrödinger-type equation with a single O(1) parameter
and, thus, cannot be solved by using a perturbation theory. The problem of capture of initially
large amplitude oscillations was approached by coupling to another oscillation starting in
equilibrium. After the capture this coupled system yields unidirectional autoresonant decrease
of the action of the initially excited oscillator. A different efficient capture into the resonance
scheme, based on oscillating the coupling parameter in the coupled oscillators system and
passage through combination resonances, allows us to fully control the system, i.e. to both
autoresonantly increase or decrease the action of the initially excited oscillator.
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